MKTG 352

Principles of Marketing Research

Instructor: Sina Aghaie

Email: sina.aghaie@grad.moore.sc.edu

Office: DMSB, 4th Floor Marketing Department Office hours: Mon & Fri 11-1pm, or by appointment Session #8

Topics for today...

Announcement

Statistical Tests

Analysis of Variance (ANOVA test)

In-Class assignment #1:

Fri., Feb. 9th

Question...

Often the marketing analyst wants to determine if varying a **single factor** has a **significant effect** on a marketing outcome such as sales. For example:

- Does a Valentine's Day card sell better on the top, middle, or bottom shelf?
- Do cookies sell more if they are placed on display in the candy aisle, cookie aisle, or cereal aisle?
- Does the sale of a computer book depend on whether the book is placed in the front, back, or middle of the computer section?

Marketing Problem

- A marketing research firm tests the impact of three pricing strategies for a new beverage using a sample of 30 people, divided randomly into three groups of 10 people each.
- Group 1 receives the product with price #1, group 2 receives the product with price #2 and so on. Each person evaluates how fair the price is.

We would like to determine whether there is a significant difference between the three groups in terms of perceived fairness.

Price 1	Price 2	Price 3
\$8	\$11	\$10
13	12	7
17	8	19
19	6	15
11	16	14
20	12	10
15	14	16
18	10	18
9	18	11
12	4	14
16	11	11
AVG=15	AVG=11.1	AVG=13.5

Method: ANOVA

What is ANOVA?

- –Statistical technique specially designed to test whether the **means** of more than **TWO** quantitative populations are equal.
- -Is typically used when researches have to determine if there is a statistical difference between **three** or more means.

ANOVA requires:

The dependent variable be metric, i.e. either interval or ratio scaled. Not categorical.

Perceived enjoyment

The independent variable be nonmetric, i.e. categorical.

Flavors

Null & alternative hypothesis

The null hypothesis for an ANOVA assumes that there is no difference between the means.

$$H_0$$
: mean₁ = mean₂ = mean₃ = \cdots = mean_n

Ha: not all of the means are equal

ANOVA

The between group variance:

 How much the sample means of the group differ from each other.

The within group variance:

 How much the responses within each group differ from one another.

Calculate F value

Notes

is a significant difference between the means or not.

The F-ratio is used to evaluate whether there

Compare the F-statistic value with F(critical) value which is obtained by looking for it in F distribution tables against degrees of freedom. If the calculated value of $F > critical\ F\ H\ null$ is rejected

Between vs. within group variance

Notes

Between-group variance is large relative to the within-group variance, so F statistic will be larger than critical value, therefore statistically Between-Group Variance significant. Conclusion – At least one of group means is significantly different from other group means Within-Group Variance

The larger the between groups variance, the greater the F-ratio.

The greater the F-ratio, the more likely is that there is a significant difference between the means of the groups.

Between vs. within group variance

Notes

The lower the between groups variance, the smaller the F-ratio.

The smaller the F-ratio, the less likely is that there is a significant difference between the means of the groups.

Step #1: Grand Mean

Grand Mean

The grand mean is the average of all the values when the groups are ignored

It is a weighted average of the individual sample means

$$\overline{\overline{X}} = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2 + \dots + n_k \overline{X}_k}{n_1 + n_2 + \dots + n_k}$$

$$\overline{\overline{x}} = \frac{\sum_{i=1}^{k} n_i \overline{x}_i}{\sum_{i=1}^{k} n_i}$$

Price 1	Price 2	Price 3
13	12	7
17	8	19
19	6	15
11	16	14
20	12	10
15	14	16
18	10	18
9	18	11
12	4	14
16	11	11

Grand Mean for our example is 13.2

Step #2:Between Group Variation, SS(B)

- The between group variation is the variation between each sample mean and the grand mean
- Each individual variation is weighted by the sample size

$$SS(B) = n_{1}(\overline{x}_{1} - \overline{\overline{x}})^{2} + n_{2}(\overline{x}_{2} - \overline{\overline{x}})^{2} + \dots + n_{k}(\overline{x}_{k} - \overline{\overline{x}})^{2}$$

SS(between)

Price 1	Price 2	Price 3
13	12	7
17	8	19
19	6	15
11	16	14
20	12	10
15	14	16
18	10	18
9	18	11
12	4	14
16	11	11
AVG=15	AVG=11.1	AVG=13.5

$$SS(B) = \sum_{i=1}^{k} n_i (\overline{x}_i - \overline{\overline{x}})^2$$

SS(B) for our example is 77.4

Step #3: Within Group Variation, SS(W)

SS(within)

- The Within Group Variation is the weighted total of the individual variations
- The weighting is done with the degrees of freedom
- The d.f. for each sample is one less than the sample size for that sample.

$$SS(W) = df_1 s_1^2 + df_2 s_2^2 + \cdots + df_k s_k^2$$

SS(W) for our example is: 9×(13.3)+9×(18.7)+9×(14.05)=414.45 Degree of freedom Group 1 variance

$$SS(W) = \sum_{i=1}^{k} df_i S_i^2$$

Step #4: F-Value

Degree of Freedom

Source	SS	d.f.	MS(variance)	F			
Between	77.4	2	38.7	2.52			
Within	414.45	27	15.35				
Total	492.8	29					

The between group d.f. is one less than the number of groups

We have three groups, so d.f.(B) = 2

The within group d.f. is the sum of the individual d.f's of each group

The sample sizes are 10, 10, and 10 d.f.(W) = 9 + 9 + 9 = 27

The total d.f. is one less than the sample size

$$d.f.(Total) = 30 - 1 = 29$$

F Table

Table of Probabilities for the F Distribution

	Alpha =	0.05																			
D/N	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	20	24	30	40	60	120
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98	243.91	244.63	245.36	245.95	248.01	249.05	250.10	251.14	252.20	253.25
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41	19.42	19.2	19.43	19.45	19.45	19.46	19.47	19.48	19.49
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	70	8.66	8.64	8.62	8.59	8.57	8.55
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.86	-00	5.77	5.75	5.72	5.69	5.66
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.62	4.5	153	4.50	4.46	4.43	4.40
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.94	3.87		3.81	3.77	3.74	3.70
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57	3.55	3.53	3.51	3.44		_			3.27
8	5.32	4.46	4.07	3.84	3 69	3 58	3.50	3.44	3.39	3.35	3.31	3.28	3.26	3.24	3.22	3.15	D.	ATTAT.	een	A f	2.97
9	5.12	4.26	3.				3.29	3.23	3.18	3.14	3.10	3.07	3.05	3.03	3.01	2.94	DC	LVV	CCII	u. I	
10	4.96	4.10	3.	Wit	hin	d. I	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.85	2.77					2.58
11	4.84	3.98	3.			٦. ٦	3.01	2.95	2,98	2.85	2.82	2.79	2.76	2.74	2.72	2.65	2.61	2.57	2.53	2.49	2.45
12	4.75	3.89	3.49		3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.62	2.54	2.51	2.47	2.43	2.38	2.34
13	4.67	3.81	3/	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.53	2.46	2.42	2.38	2.34	2.30	2.25
14	4.60	3.74	A	3.11	2.96	2.85	2.76	2.70				2.53	2.51	2.48	2.46	2.39	2.35	2.31	2.27	2.22	2.18
15	4.54	3.60	3.29	3.06	2.90	2.79	2.71	2.64	F	=3.3	5	2.48	2.45	2.42	2.40	2.33	2.29	2.25	2.20	2.16	2.11
16	4.49	B	3.24	3.01	2.85	2.74	2.66	2.59	_	J.J		2.42	2.40	2.37	2.35	2.28	2.24	2.19	2.15	2.11	2.06
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55				2.38	2.35	2.33	2.31	2.23	2.19	2.15	2.10	2.06	2.01
18	4/1	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.27	2.19	2.15	2.11	2.06	2.02	1.97
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2 10	2.42	2.38	2.34	2.31	2.28	2.26	2.23	2.16	2.11	2.07	2.03	1.98	1.93
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.50	2.31	2.28	2.25	2.22	2.20	2.12	2.08	2.04	1.99	1.95	1.90
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.28	2.25	2.22	2.20	2.18	2.10	2.05	2.01	1.96	1.92	1.87
22	4.30	3.44	3.05	2.82	2.65	2.55	2.46	2.40	2.34	2.30	2.26	2.23	2.20	2.17	2.15	2.07	2.03	1.98	1.94	1.89	1.84
23	4.28	3.42	3.03	2.80	251	2.53	2.44	2.37	2.32	2.27	2.24	2.20	2.18	2.15	2.13	2.05	2.01	1.96	1.91	1.86	1.81
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.22	2.18	2.15	2.13	2.11	2.03	1.98	1.94	1.89	1.84	1.79
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20	2.16	2.14	2.11	2.09	2.01	1.96	1.92	1.87	1.82	1.77
26	4 23	3 37	2 418	2 74	2 50	2 47	2.30	2 32	2 27	2 22	7 18	2 15	2 12	2.09	2.07	1 99	1 95	1 90	1.85	1.80	1 75
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.17	2.13	2.10	2.08	2.06	1.97	1.93	1.88	1.84	1.79	1.73
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12	2.09	2.06	2.04	1.96	1.91	1.87	1.82	1.77	1.71
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14	2.10	2.08	2.05	2.03	1.94	1.90	1.85	1.81	1.75	1.70
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09	2.06	2.04	2.01	1.93	1.89	1.84	1.79	1.74	1.68
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00	1.97	1.95	1.92	1.84	1.79	1.74	1.69	1.64	1.58
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92	1.89	1.86	1.84	1.75	1.70	1.65	1.59	1.53	1.47
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.87	1.83	1.80	1.78	1.75	1.66	1.61	1.55	1.50	1.43	1.35

Right Tailed, D/N = df in denominator = down the rows, df in numerator = across the columns

Table of Probabilities for F Distribution

Note: Table is for an alpha of 0.05

©Copyright Lean Sigma Corporation 2013

The F value is 2.52, which is less than the critical F, so we cannot reject the null hypothesis.

Conclusion

Follow up tests

There is not enough evidence to support the claim that there is a difference in the perceived fairness level of the price1, price2, and price3.

Follow up tests:

Performed after an ANOVA determines there is a significant difference in the means. Tells us the groups which are significantly different from each other.

Some Comments ...

Companies look for people who can bridge the managerial problems to statistics/math/programming!

The hardest part comes after mid-March,

please set the appropriate expectations to

- How much time to study
- How much to comprehend/understand

